METHODOLOGIES FOR FLOODS AND SURGES IN RIVERS!

D. L. Fread?

SUMMARY

Floods and surges can be mathematically generated by models noted
herein which consider the complex natural phenomena involved in the pre-
cipitation-runoff process, dam failures, landslide and hurricane genera-
ted surges. The mathematical prediction of the changing magnitude and
shape of the initially generated flood or surge as it propagates through
natural waterways is the function of flood routing models. A synopsis
of routing models which are being used in the United States by the engi-
neering profession is presented with emphasis given to the most recent
advances associated with those models based on implicit finite differ-
ence solutions of the Saint-Venant (flood routing) equations and their
application to complex hydraulic processes.

INTRODUCTION

Floods and surges occur in waterways (rivers, reservoirs, or estu-
aries) as a result of runoff from precipitation (rainfall and/or snow-
melt), reservoir releases (spillway flows, hydropower turbine dis-
charges, or damfailures), landslide generated waves within reservoirs,
and tides (astronomical and/or wind generated such as hurricane surges).

The mathematical prediction of the magnitude and temporal proper-
ties of the floods and surges has long been of vital concern to man as
he has sought to improve the transport of water through man-made or nat-
ural waterways and to determine necessary actions to protect life and
property from the effects of flooding.

This paper simply notes some of the methodologies for generating
the salient characteristics of a flood caused by precipitation runoff,
dam failure, landslide or hurricane generated surge. However, the paper
is primarily concernmed with methodologies for predicting the extent of
change in the flood's properties (magnitude, shape, timing) as it propa-
gates through the waterway. Such methodologies are collectively
described as flood routing methods. In this paper a general description
is given of some recently developed and implemented flood routing meth-
ods by the engineering profession as practiced within federal and state
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governmental agencies, private consulting firms, and universities
throughout the United States. Descriptions are included of recent
developments which enable the flood routing methodology to be applicable
in complex waterways with hydraulic structures that significantly affect
the flood's properties.

FLOOD GENERATION MODELS

Mathematical models for generating the initial flood hydrograph
(either discharge or water surface elevation as a function of time) is
essential in those cases where the flood originates as a result of com—
plex interaction of several natural phenomena. Such prediction methodo-
logies enable the flood hydrograph to be generated prior to its actual
occurrence in the waterway. This provides critical lead time in the
case of flood forecasting and warning; or as in the case of engineering
flood studies, the effect of the primary caustive factors can be deter-
mined in terms of the characteristics of the flood occurring at specific
points of interest along the waterway.

Precipitation Runoff Floods

The flood hydrograph produced by runoff from precipitation can be
generated by mathematical models known as rainfall-runoff models. (See
a recent article by Linsley (1982) for an excellent overview of this
type of model.) Several models have received considerable use in recent
years. Among these are three continuous deterministic conceptual mod-
els: 1) the Stanford Watershed Model (Crawford and Linsley, 1966) and
its more recent version as decribed by Johanson, et al. (1980) which use
a soil moisture accounting system; 2) the SSARR Model (Rockwood, 1958)
which uses a user specified rainfall-runoff relationship and a routing
relation to account for watershed, channel, and lake storage; and 3) the
National Weather Service River Forecast System (National Weather Ser-
vice, 1972) which 1is similar in concept to the Stanford Model but uses a
special soil moisture accounting system (Burnash, et al., 1973). Also,
among these models are four deterministic conceptual event-type mod-
els: 1) the Corps of Engineers HEC-l1 Model (Hydrologic Engr. Ctr.,
1981) which determines rainfall excess after infiltration loss via sev-
eral user selected alternative methods including the Soil Comservation
Service Curve Number Method (Soil Conservation Service, 1972) while tem—
poral distribution is accomplished by unit hydrograph or kinematic wave
techniques; 2) the MITCAT Model (Harley, 1975) which is a distributed
parameter model using kinematic wave theory; 3) another distributed
kinematic routing rainfall-runoff wmodel by Dawdy, et al. (1978); and 4)
the Storm Water Management Model (SWMM) developed for the Environmental
Protection Agency (Metcalf and Eddy, Inc. et al., 1971). The continuous
models tend to be used on gaged drainage basins while the event-type
models are used on both gaged and ungaged basins. Calibration diffi-
culties (uniqueness, efficiency, transferability) are associated with
the continuous models while degree of accuracy is a problem with the
event-type models.



Dam=Failure Floods

The flood hydrograph produced by the failure of earthen or concrete
dams can be predicted by the following empirical techniques: 1) a para-
metric approach developed by Fread (1977) wnich considers the time
dependent growth of a breach in the dam having constant shape (rectan-
gular, triangular, or trapezoidal) through which the reservoir stored
waters are released according to level pool reservoir storage routing
through a broad-crested weir breach corrected for downstream tailwater
effects; the final width of the breach, the time required to form the
breach, the shape of the breach, and the reservoir elevation when
breaching commences are empirically determined from historical dam
failure information; 2) a simple empirical equation developed by Hagen
(1982) which predicts the maximum discharge (Qm), f.00,

03 (1)

Qm = 530 (H Sv
in which H is the dam height (ft) and S, is the reservolir storage volume
in acre-ft; the hydrograph is assumed to be triangular with the reces-
sion time (hr) given by Tr-24.ZSV/Qm; and 3) a simple falling-head weir
equation (Fread, 1981), i.e.,

=y 13
Q = 3.1 W [ C/(Tgr C/VR) ] (2)

in which CaZB.ASa/W, W 1is the average breach width (ft) which for earth-
en dams is defined as 2 < W/H < 4, and T¢ is the time (hr) for breach
formation, 0.1 < T. <1 , and S, {s the surface area (acre-=ft) of the
full reservoir; the hydrograph is assumed to be triangular with a time
(T¢) for the rising 1imb and a recession time of Tr=2A.28V/Qm-Tf. The
flood hydrograph from breached earthen dams can be predicted by the fol-
lowing two physically based mathematical models: 1) a breach erosion
model developed by Ponce and Tsivoglou (1981) which is applicable to
overtopping failures of homogeneous earthen dams; the model couples the
Meyer-Peter and Muller (M=P-M) sediment transport equation to the one
dimensional differential equations of unsteady flow and sediment conser-
vation; the model utilizes a judicious selection of a hydraulic friction
factor, a breach width-flow parameter, and a sediment transport coeffi-
cient; and 2) a breach erosion model developed by Fread (1984b) which
couples the M-P-M sediment transport equation to equations for sediment
conservation, reservoir conservation, unsteady uniform flow, and soil
slope stability; the model utilizes the dam's soil properties: average
particle size, internal friction angle, and cohesive strength for a dam
which may have core material which differs from the rest of the dam;
failure modes of overtopping, piping and/or pressure collapse can be
simulated.

Landslide Generated Surges

The surge resulting from a landslide which rushes into a reservoir,
displacing a portion of the reservoir contents and, thereby creating a
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very steep water wave which travels up and down the length of the reser-
volr can be generated by a model described by Fread (1984). The volume
of the landslide mass, its porosity, angle of repose, and the time
interval over which the landslide occurs are hasic input parameters. In
the model during small computational time steps, the landslide mass is
deposited within the reservoir at its angle of repose and simultaneously
the original dimensions of the reservoir are reduced accordingly. The
time rate of reduction of the reservoir area creates the wave during the
solution of the one-dimensional unsteady flow (Saint-Vemnant) equations
which are defined later herein.

HBurricane Generated Surges

Hurricane-generated surges are predicted by the National Weather
Service using the SPLASH Model (Jelesnianski, 1972). SPLASH is a two-
dimensional, vertically integrated hydrodynamic model. Externally
specified meteorological parameters are utilized to generate the hurri-
cane wind field. These parameters are (a) the radial distance and pres-—
sure drop from the storm center to its periphery, and (b) the forward
speed of the storm. The wind field submodel empirically computes the
maximum wind speed in a stationary storm and generates the wind field by
dynamically balancing the computed wind speed, pressure gradient, and
inflow angle fields. The computed wind field is then incorporated into
the two-dimensional hydrodynamic equation through the wind stress term
which drives the model, i.e., causes the development of the storm
surge. The governing partial differential hydrodynamic equations of
SPLASH are numerically solved using an explicit finite difference tech=-
nique. Terms relating to the water depth are linearized such that the
computed surge height 1s not added to the undisturbed depth during the
computations. Botton friction is treated using the Ekman prianciple.
The computational grid size is approximately 4 miles. The most recent
version has the capability to treat overtopping of finite barrier
heights to allow coastal flooding. A similar model (Chen, et al. 1980)
is also used by engineering consultants for hurricane surge predictions

FLOOD ROUTING MODELS

Flood routing may be defined as a mathematical method (model) for
predicting the changing maginitude and celerity of a flood wave which
propagates through a river, reservoir, or estuarye. Commencing with
investigations as early as the 17th century, mathematical techniques to
predict wave propagation have been continually developed and appear
profusely in the engineering literature. The basic theory for the one=
dimensional analysis of flood wave propagation was originally developed
by Saint-Venant (1871).

Governing Equations

The governing equations for flood routing models are the Saint-
Venant equations which consist of a conservation of mass equatiom:
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and a conservation of momentum equation:
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in which t is time, x is distance along the longitudinal axis of the
waterway, A 1s cross-sectional area, V is velocity, g is the gravity
acceleration constant, h is the water surface elevation above a datum,
and Sf i{s the friction slope which may be evaluated using a steady flow
empirical formula such as the Chezy or Manning equation. Egs. (3-=4) are
quasi-linear hyperbolic partial differential equations with two depend-
ent parameters (V and h) and two independent parameters (x and t). A is
a known function of h, and Sg 1is a known function of V and h. No
analytical solutions, particularly for practical boundary conditions and
cross—section shapes, exist. Derivations of these equations can be
found in the literature, e.g. Stoker (1953), Strelkoff (1969), Liggett
(1975). A more powerful and useful form of the Saint-Venant equations
i{s their so-called conservation form with additional terms to account
for lateral flows, off-channel (dead) storage areas, and wind, f.e.,

20, AP/ gy (Brs, )-qu +WB=0 (O

| 2
vhere: 5, = Z—T;A%l{%-j- (7
W, = cw,vrlvr (8)
V_=Q/A-V, cosa (9)

in which Q is discharge, q is lateral inflow (+) or outflow (=), Ao is
off-channel (dead) storage cross-sectional area, v, is the velocity of
the lateral inflow in the x-direction of the main channel flow, Wf is
the wind factor, n is the Manning friction coefficient, R is the hydrau-
lic radius, C, is the wind friction coefficienc, V. is the relative vel-
ocity between the channel flow and wind, a is the acute angle between
the direction of river flow and wind, V, is the wind velocity which is
(=) if aiding the channel flow, and B 1is the wetted topwidth of  the
channel.

Simplified Routing Models

Due to the complexities of the Saint-Venant equations their solu-
tion was not feasible, and various simplified approximations of flood
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wave propagation continued to be developed. Indeed such techniques
appear profusely in the engineering literature. An excellent summary of
such 1s presented by Miller and Cunge (1975).

Kinematic Models One popular type of simplified model is the kine-=
matic wave model. The essence of the kinematic model is the use of the
following simplified form of the conservation of momentum Eq. (4), Le.e.,

3f - SO = 0 (10)

where 3h/3x = 3y/3x -S_ in Eq. (4). Eq. (10) essentially states that
the momentum of the unsteady flow is assumed to be the same as that of
steady uniform flow as described by the Chezy or Manning equation or
some other similar expression in which discarge is a single-valued func-
tion of stage, e.g.,

A=qqf (11)

in which A is the cross-sectional area, a = [B/(C2s )]1/3, g=2/3, Cis
the Chezy coefficient, and B 1is the wetted top width of the channel.
Combining Egs. (10-11) and Eq.. (3) results in the following nonlinear
kinematic wave model (Li, et al., 1975):

Byt B=o (12)
which can be solved by explicit or implicit finite difference methods,
the latter being more efficient in most river applications. The kine=
matic wave model is limited to applications where single-valued stage-
discharge ratings exist, and where backwater effects are insignificant
since in kinematic models flow disturbances can only propagate in the
downstream direction. Also, the kinematic model modifies the flood wave
through attenuation and dispersion via errors inherent in the finite
difference solution technique. The phenomenon of numerical damping
merely mimics the actual physical damping of a flood wave since there is
no mechanism in the basic kinematic equation to cause such damping. The
xinematic wave models are very popular in applications to overland flow
routing of precipitation runoff.

Diffusion Models Another simplified hydraulic model is the diffu-
sion model wnich utilizes Eq. (3) and a simplified form of Eqe (4):

Sg - 3h/x = 0 (13)

Eq. (13) may be expressed in terms of channel conveyance K, which 1is a
single-valued function of elevation h, i.e.,

. 15
Q = R (h)'2h /|h | (14)

where h = sh/3x. Eq. (14) allows for upstream directed flows. Either
explici¥ (Harrison and Bueltel, 1973) or implicic (Brakensiek, 1965)



techniques can be used to solve Eqs. (3 and 14), the latter being much
more efficient computationally since it 1is not restricted to extremely
small time steps due to numerical stability constraiats of the explicit
methods. The nonlinear diffusion wave model is a significant improve-
pment over the kinematic model because of the inclusion in Eq. (13) of
the water surface slope term (3h/3x) of Eq. (4). This term allows the
diffusion model to describe the attenuation (diffusion effect) of the
flood wave. It also allows the specification of a boundary condition at
the downstream extremity of the routing reach to account for backwater
effects. It does not use the inertial terms (first two terms) of Eq.
(4) and, therefore, is limited to slow to moderately rising flood waves
in channels of rather uniform geometry. It should be noted that using
Eq. (4) rather than Egs. (13 or 14) whereby the 1inertial terms are
included results in only a 207 increase in computational effort for
implicit finite-difference models.

Muskingum—Cunge Models The Muskingum Model first reported by
McCarthy in 1938 is based on Eg. (3) written in the following form:

T -0 = as/at ’ (15)

in which AS is the change in storage within the reach during a At time
increment; the storage (S) is assumed to be related to inflow (1) and/or
outflow (0), i.a.,

s = K(XT + (1-X)0] (16)

If Eq. (15) is expressed in centered finite difference form, the follow-
ing is obtained:
I1 + Iz ) 01 + o2 _ S2 - S1 an
2 2 At
in which the subscript (1) represents time t and (2) represents time
t+At. Substituting Eq. (16) into Eq. (17), the following equation for
computing 0, is obtained:

02 = COIZ +CIII + C20l (18)
where: Co = - (KX - At/2)/C3 (19)
C1 = (KX + At/Z)/C3 (20)
c2 = (K- KX - A:/Z)/C3 (21)
C3 a R -K + at/2 (22)

Eqs. (18=22) comprise the Muskingum Model. The parameters K and X are
determined from observed inflow-outflow hydrographs using such tech-
niques (Singh and McCann, 1980) as: 1) least squares or its equivalent,
the graphical method, 2) method of moments, 3) method of cumulants, and
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4) direct optimization method. An important variation of the Muskingum
model was reported by Cunge (1969) who developed the Muskingum equation
using kinematic wave theory including the assumption of a single-valued
stage-discharge relation and a four-point implicit finite difference
approximation technique. Eq. (18) remains the same, but the following
expressions for K and X are determined:

K = ax/c ' (23)
X =Y [1 -q,/(B,e S, ax]] (24)
where: ¢ = dQ/dA ' (25)

in which ¢ is the kinematic wave speed corresponding to a reference dis-
charge Qo’ ox is the reach length, So i{s the channel bottom slope, and
B. is channel width corresponding to Qo' Wwith K and X defined by Eqgs.
(33) and (24) the Muskingum Model was shown by Cunge to increase its
inherent accuracy from that of kinematic based models to that associated
with diffusion models. Ponce and Yevjevich (1978) expanded this method
by using variable parameters c and B for temporally varying Q. An
important limitation of the Muskingum—Cunge model is its inability to
account for backwater effects due to natural channel constrictions,
bridges, dams, tides, and large tributary inflows.

Dynamic Wave Models

If the complete Saint-Venant equations are used, the model is known
as a dynamic wave model. With the advent of high-speed computers Stoker
(1953) first attempted to use the complete Saint-Venant equations for
routing floods on the Ohio River. Since then, much effort has been
expended on the development of dynamic wave models, and the literature
contains many such models. They can be categorized according to direct
and characteristic methods of solution of the Saint-Venant equations.
In the method of characteristics, the partial differential equations are
first transformed into an equivalent set of four ordinary differential
equations which are then approximated with finite differences to obtain
solutiouns. Since characteristic methods have not proven advantageous
over the direct methods there has not been much continued interest in
them and they will not be mentioned further herein. Dynamic models can
be classified further as either explicit or implicit, depending on the
type of finite difference scheme that is used. Explicit schemes trans-
form the differential equations into a set of easily solved algebraic
equations. However, implicit schemes transform the differential equa-
tions into a set of algebraic equations which must be solved simultane-
ously; the set of simultaneous equations may be either linear or nonlin-
ear, the latter requiring an iterative solution procedure.

Explicit Models Explicit finite difference models advance the
solution of the Saint-Venant equations point by point along one time
line in the x—-t solution domain until all the unknowns associated with
that time line have been evaluated. Then, the solution is advanced to
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the next time line. In an explicit scheme, the spatial derivatives and
non-derivative terms are evaluated on the time line where the values of
all variables are known. Only the time derivatives contain unknowns.
Thus, in an explicit model, two linear algebraic equations are generated
from the two Saint-Venant equations at each net point (node). Since the
two equations can be solved directly for the unknowns, the equations are
described as "explicit.” Explicit models are limited to very small time
steps due to numerical stability comstraints, e.g.,

at < </ [V + /gATB + gu2|v]ax/(2.2 R¥D)]

(26)
The first two terms in the denominator are associated with the well-
known Courant condition for stability of explicit schemes in frictiom-
less flow. The third term accounts for the effects of friction. This
inequality, or some slight modification thereof, 1is representative of
all explicit models. An inspection of Eq. (26) indicates that the com~
putational time step is substantially reduced as the hydraulic depth
(A/B) is increased. Thus, in large rivers, it is not uncommon for time
steps on the order of a few minutes or even seconds to be required for
numerical stability even though the flood wave may be very gradual, hav-
ing a duration in the order of weeks. Such small time steps cause the
explicit method to be very inefficient in the use of computer time.
Another disadvantage of explicit schemes is the requirement of equal aAx
distance steps. Among several explicit dynamic models reported in the
literature, three that have received considerable use are: 1) the TVA
model (Garrison et al., 1969), Army Corps of Engrs. SOCJM Model (John-
son, 1974), and the FAT Model developed by Balloffet (1969).

Implicit Models Implicit models were developed to overcome the
limitations on the time step required for explicit models. Implicit
models first appeared in the literature in the early 1960's with the
work of Preissmann (1961) and later Vasiliev, et al. (1965), Abbott and
Ionescu (1967), Baltzer and Lai (1968), Amein and Fang (1970), Quinn and
Wylie (1972), Fread (1973, 1974, 1978), and many others. Implicit
finite difference schemes advance the solution of the Saint-Venant equa-
tions from one time line to the next simultaneously for all points along
the time line (i.e., along the x-axis of the waterway). Thus, in an
implicit model, a system of 2N algebraic equations is generated from the
Saint-Venant equations applied simultaneously to the N cross sections
along the x-axis. Depending upon the type of implicit finite difference
scheme chosen, the system of algebraic equations so generated may be
either linear or nonlinear. Implicit models are computationally more
complex than explicit models. Depending oa the type of implicit scheme
(linear or nonlinear), the number of computations during a time step are
several times greater than that of an explicit scheme. This extra com=
putational requirement is much greater than that of an explicit scheme.
It is prohibitive if the method of solving the system of simultaneous
equations is not efficient by taking advantage of the banded-structure
of the coefficient matrix of the system of equations. Efficient solu-
tion techniques include the following: (1) a compact penta-diagonal
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elimination method described by Fread (1971) which makes use of the
banded structure of the coefficient matrix of the system of equations,
or (2) the double sweep method developed in Europe (Liggett and Cunge,
1975). If the implicit scheme is linear, only one solution of the
system of equations is required at each time step. However, if the
implicit scheme is nonlinear, an iterative solution 1s necessary, and
this requires one or more solutions of the system of equations at each
time step. The use of the Newton-Raphson iterative method for nonlinear
systems of equations (Amein and Fang, 1970) provides a very efficient
solution if selected convergence criteria are practical. If the Newton-
Raphson method 1is applied only once, the nonlinear implicit model is
essentially equivalent to the linearized implicit models with respect to
computational effort and performance.

Implicit schemes have generally been four-point, i.e., the conser-
vation of mass and momentum have been applied to the flow existing
between two adjacent cross sectiouns. The weighted four-point scheme
allows a convenient flexibility in the placement of x-derivative and
non-derivative terms between two adjacent time lines in the x-t solution
domain. The weighting factor must be equal to or greater than 0.5 to
provide unconditional linear stability with respect to time step size,
and the accuracy of the scheme generally decreases as the weighting
factor approaches unity, 1l.e., when the terms are expressed entirely at
the forward time line. A few six-point schemes have been proposed,
e.g., Abbott and Iomescu (1967) and Vasiliev, et al. (1965), but they
have the disavantage of requiring regular Ax intervals whereas the four—
point schemes allow variable sx spacing. Also, the six-point schemes
treat the boundary conditions in a more complicated and less desirable
manner than the four-point schemes. In implicit &4-pt. schemes, solu~-
tions of h and V in Eqs. (3 and 4) or h and Q in Eqs. (5 and 6) are
sought in the discretised x-t solution domain which 1is represented by a
rectangular net of discrete points. The net points (nodes) may be at
equal or unequal {ntervals of At and Ax along the t and x axes, respec-—
tively. Each node is identified by a subscript (i) which designates the
x position and a superscript (j) for the time line. A 4-pt. weighted,
implicit difference approximation is used to transform the nonlinear
partial differential equationms of Saint-Venmant into nonlinear algebraic
equations. The 4-pt. weighted difference approximations are:

) S L1 J+l _ ol _ od J

= ®Trry -8 &1, )/2a) (27)

X J+l i+l - i o

= * 8%y (Riqp K )+ o)/ ax; (Kyy Xy ) (28)
- j+l j+l _ j j

R =0.50 (K, +gi+l)+o.5(1 o (¥ *+ Kiyy) (29)

where K is a dummy parameter representing any variable in the Saint-
Venant equations , 9 is a weighting factor varying from 0.5 to I, 1 is a
subscript denoting the sequence number of the cross section or Ax reach,
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and j is a superscript denoting the sequence number of the time line in
the x-t solution domain. A O value of 0.5 is known as the "box" scheme
while = 1 is the "fully implicit” scheme. To insure unconditional
linear numerical stability and provide good accuracy, @ values nearer to
0.5 are recommended (Fread, 1974). Accuracy decreases as @ departs from
0.5 and approaches 1.0. This effect becomes more pronounced as the time
step size increases. Fread (1974) investigated the numerical properties
of the weighted &4-pt. implicit scheme applied to the following simpli-
fied form of Egqs. (3) and (4):

sh v
ot + D, X 0 (30)
v . sh
o + gax + kV 0 31)
22V
in which k = —— (32)
CD
o

h is the water surface elevation, C is the Chezy friction coefficient,
and D° and V, are initial values of hydraulic depth and velocity,
respectively. An expression for stability (in the sense of the von
Neumann conjecture that linear operators with variable coefficients are
stable if all their localized operators in which the coefficients are
taken constant are stable) 1s given by the following expression:

1/2
[A] =

- 2)2 -
[1 + (20-2)2a + (o 1)b] (13)

1+482a+6b

in which a = gD (At/ax)2 tan2 (rAx/L); b = kat; and L = wavelength =

wave celerity x duration. If le < 1, independent of the
and At, the errors due to truncation and round-off will
time, and the difference equations are unconditionally
ble. This is the case when 0.5 < @ < l, although only
(iiee, |A] = 1) when @ = 0.5 and k approaches zero.
weighted 4=-pt.
f.e., —
At < 0.1l ¢ Z T //D
P02

1-22 }-
462 g2 - (20 - 2)2°

Z =

where:

in which T
wave celerity in ft/sec, ¢ is the permissible
0.90 < & < 0.99, and At is the time step in hours.

Two of the more frequently used dynamic wave models
i{mplicit routing models developed by the National
DAMBRK (Fread,1977,
(Fread,1978) for any type of flood.
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scheme depends on the selection of At (Fread

values of Ax
not grow with
linearly sta-
weakly stable
of the
1984¢),

(34)

(35)

is the time of rise of the flood wave in hours, c¢ 1is the
error

ratio,

are the 4-pt.

Weather Service,
1984a) for dam—-break generated floods and DWOPER
A recently developed model by the



U.S. Geological Survey, BRANCH (Schaffranek et al., 198l), is also a 4~
pt. implicit model. The computational requirement of the NWS models are
300-400K storage and 0.001 to 0.004 sec per Ax per At on an IBM 360/195
computer.

Routing;ﬂodel Selection

Flood routing has been an important type of engineering analysis
and this importance along with its inherent complexity have resulted in
the proliferation of routing models. The literature abounds with a wide
spectrum of useable and reasonably accurate mathematical models for
flood routing when each is used within the bounds of its limitationms.
The selection of a channel routing model for a particular application is
influenced by the relative importance one places on the following fac-
tors: (1). model accuracy; (2) the accuracy required in the application;
(3) the type and availability of the required data; (4) the available
computational facilities; (5) the computational costs; (6) the extent of
flood wave information desired; (7) one's familiarity with a given mod-
el; (8) the extent of documentatiom, range of applicability, and avail-
ability of a "canned” or packaged routing model; (9) the complexity of
the mathematical formulation if the routing model is to be totally
developed from "scratch” (coded for computer); and (10) one's capability
and time available to develope a particular type of routing model. Tak-
ing all factors into consideration and recognizing that each application
may change the relative importance of each factor, it is apparent that
there is no universally superior routing model. In the absence of sig-
aificant backwater effects, the kinematic and Muskingum—Cunge routing
models offer the advantage of simplicity. The accuracy considerations
restrict these models to applicatiomns where the depth-discharge relation
is essentially single valued. Ponce et al. (1978) and Fread (1984) have
developed similar criteria for their acceptable range of application in
non-backwater situations. For kinematic-type wmodels including the Mus-
kingum model, the following criterion will restrict routing errors to
less than E percent:

1.6 1.2 0.2
TS > 0.2/E 35
CRRICE S R / (35)

A similar criterion for the diffusion models including the Muskingum=
Cunge model is:

0.7 0.6,,., . O
Tpso n /(¢ a, ) > 0.003/E (36)
where: 6 = (mrl)2/(3m+5) (37)
o' = (2+3)/(3m+S5) (38)

in which T. is the time of rise (hrs) of the inflow hydrograph, S, is
the channel slope (ft/ft), q, is a unit-width peak discharge (cfs), n is
the Manning coefficient, and = i{s the cross-section shape factor,
0 <m < 2, where channel topwidth (B) is described by the power func-
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tion B=ky® in which y is flow depth. Inspection of Eqs. (35) and (36)
reveals the importance of the parameters, T and S.. Also, it is appar-
ent that the diffusion models are applicable for a wider range of bottom
slopes and hydrographs than the kinematic models. In instances of a
gently sloping channel and rapidly rising flood wave, when the
combination of S. and T. becomes small enough that Eq. (36) cannot be
satisfied, dynamic wave models are required. The simple Muskingum-Cunge
model can be used effectively in many applications where Eq. (36) is
satisfied and backwater effects are not significant. However, as the
trend continues for increasing computational speed and storage capabili-
ties of computers at decreasing costs, such accessibility to inexpensive
computational resources should increase the feasibility of using the
dynamic wave models for a wider range of applications. Among the models
reviewed, the dynamic wave routing model based on the complete Saint-
Venant equations have the capability to correctly simulate the widest
spectrum of wave types and waterway characteristics. The dynamic wave
models are preferred over all other models when: (1) backwater effect is
important due to tides, significant tributary inflows, dams, and/or
bridges; and (2) the upstream propagation of waves can occur from large
tides and storm surges or very large tributary inflows. The implicit
dynamic wave model is the most efficient and versatile although the most
complex of the dynamic wave models.

Flood Routing Complexities

The routing of floods in natural waterways entails many complexi-
ties that require special treatment. These include internal boundaries,
floodplains with meandering rivers and/or levees, mixed subcritical-
supercritical flows, networks of river channels, sediment transport
effects, and streamflow-aquifer interactious.

Internal Boundaries There may be locations such as a dam, bridge,
or watertall (short rapids) along a waterway where the Saint-Venant
equations are not applicable. At these locations, the flow is rapidly
varied rather than gradually varied as necessary for the use of the
Saint-Venant equations. Empirical water elevation-discharge relatioans
such as weir-flow can be utilized for simulating rapidly varying flow.
Unsteady flows are routed along the waterway including points of rapidly
varying flow by utilizing intermal boundaries. At internal houndaries,
cross sections are specified for the upstream and downstream extremities
of the section of waterway where rapidly varing flow occurs. Since, as
with any other Ax reach, two equations (the Saint-Venant equations) are
required, the internal boundary &x reach requires two equatiouns. The
first of the required equations represents the conservation of mass with
negligible time-dependent storage, 1l.e.,

i+l +1

QG -G T 0 (39)

The sacond of the required equations can be any appropiate empirical
rapidly varied flow relation beween discharge (Qi) and the upstream and
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downstream water surface elevations, e.g., the flow through a dam
spillway and/or breach, a bridge, a critical flow section, or the
overtopping flow of a bridge embankment.

Floodplain with Meandering River Unsteady flow in a natural river
which meanders through a wide floodplain is complicated by large differ-
ences in geometric and hydraulic characteristics between the river chan-
nel and the floodplain, as well as the extreme differences 1in the
hydraulic roughness coefficient. The flow is further complicated by the
meandering channel which causes a longer flow path than that for the
floodplain and by portions of the floodplain which act as dead storage
areas wherein the flow velocity is negligible. Fread (1976, 1984)
developed a modified form of the Saint-Venant equations for rtouting
floods in meandering rivers with floodplains such that the flow in the
seandering channel and floodplain are identified separately. Thus, the
differences in both hydraulic properties aund flow=-path distance are
taken into account in a physically meaningful way, but one that is one-
dimensional in concept. This development differs from coanventional one-
dimensional treatment of unsteady flows in rivers with floodplains,
wherein the flow is either averaged across the total cross-sectional
area (channel and floodplain) or the floodplain 1is treated as off-
channel storage and the reach lengths of the channel and floodplain are
assumed to be identical.

Levee-Separated Floodplain The interaction of floodplain flows
with those of the main river but separated from the latter by levees
extending parallel to the river channel oa either or both sides can be
modelled by combining the Saint-Venant equations with broad-crested weir
flow equations corrected for submergence effects as described by Fread
(1983a). The floodplain may connect back iato the main river channel;
it may be disconnected as in the case of a floodplain contained within a
ringed levee where the floodplain flow is ponded with no exit. The flow
may also pass from the river to the floodplain through a time-dependent
breach in the levee. Depending on the relative computed elevatioms in
the channel and floodplain, the overtopping levee flow can reverse 1its
direction and flow from the floodplain back into the river. The flow
transferred across the levee 1is considered to be lateral inflow or
outflow in the Saint-Venant equations.

When the floodplain is further complicated by its division into a
number of separate compartments by levees extending perpendicualr to the
river into the floodplain, a methodology for routing the flows therein
1s described by Fread (1984) in which flow transferral 1s accomplished
by broad-crested weir flow corrected for submergence effects and the
flow within each compartment is routed by the storage Eq. (15).

Mixed Flow When the flow changes with either time or distance
along the routing reach from supercritical to subcritical or, converse=
ly, the flow is described as “nixed”. Routine application of either
explicit or implicit finite-difference versions of the Saint-Venant
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equations to such mixed flows results in highly unstable solutioms.
Fread (1983) described a stable algorithm for treating such flows with
the Saint-Venant equations. At each time step during the solution, sub-
reaches are delineated where supercritical flow exists by computing the
Froude number at each cross section and grouping consecutive Ax reaches
into subecritical or supercritical subreaches during each time step.
Then the Saint-Venant equations are applied and solutions obtained for
each subreach, commencing with the most upstream subreach and progress-
ing downstream until each subreach has been solved. Appropiate external
boundary equations are used for each subreach. Critical flow 1is used as
the downstream boundary conditioa at the transition from subcritical to
supercritical subreaches. The critical depth and computed discharge are
used as upstream boundary conditions for the supercritical reach which
does not require a downstream boundary conditioa. The computed dis-
charge at the downstream end of the supercritical reach 1s used as the
upstream boundary condition for the next subcritical subreach.

Channel Network A network of channels presents complications in
achieving computational efficiency when using the 4-pt. implicit solu-
tion of the Saint-Venant equations. If equations representing the con-
servation of mass and momentum at the confluence of two channels are
used, a matrix is produced in the simultaneous solution procedure whose
elements are not contained within the narrow band along the main-
diagonal of the matrix. The colummn location of the elements within the
matrix depends on the sequence numbers of the adjacent cross sections at
the confluence. The generation of such "off-diagonal” elements produces
a "sparse” matrix containing relatively few non-zero elements. Unless
special matrix solution techniques are used for the sparse matrix, the
computation time required to solve the matrix by conventional matrix
solutions techniques is so great as to make the implicit method infeasi-
ble. Two types of algorithms have been used for an efficient computa-
tional treatment of channel networks.

The first, called the “relaxation” algorithm (Fread, 1973), 1is
restricted to a dendritic (tree-type) network of channels. In this
approach no sparse matrix 1is generated; the matrix is always banded as
it is for a single channel reach. During a time step the Saint-Venant
equations are solved first for the main channel, and then they are
solved for each tributary. The tributary flow at the confluence with
the main channel is treated as lateral flow (q) which is firsc estimated
from previous tributary flows when solving the equations for the main
river. The tributary flow depends on its upstream boundary condition,
lateral inflows along its reach, and water surface elevation at the con—
fluence (downstream boundary for the tributary) which is obtained during
the simulation of the main channel. The interdependence of flows in the
main channel and its tributaries requires an iterative solution which
usually converges in one or two iterations.

The second type of algorithm (Fread, 1983a; Schaffranek et al.,
1981) treats a junction of two channels as an internal boundary condi-
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tion comnsisting of Eq. (15) and two expressions for a steady state form
of the momentum Eq. (4). This type of algorithm can be used with any
natural system of channels (dendritic systems having any order of tribu-
taries; bifurcating channels such as those associated with islands, del-
tas, flow bypasses between parallel channels, and tributaries joining
pbifurcated channels). The network algorithm produces a sparse matrix
which is solved by a special matrix technique which treats ouly non=zero
elements. The network algorithm 1s more versatile than the relaxation
algorithm.

Sediment Transport Effects A complex interaction of unsteady flow
and sediment transport occurs in rivers with sand beds. The river bot-
tom aggrades (raises) and degrades (lowers) itself during the passage of
the flood wave and the hydraulic resistance of the river bottom changes
simultaneously as the sand bedforms change their configuration. Aggra-
dation and degradation effects have been modelled by Chen and Simons
(1975) and Chang (1984) who coupled the sediment conservation equation
to implicit solutions of the Saint-Venant equations. The sediment con-
servation equation is:

) A, W _
(1=2) i ag = 0 (40)
in which A is the porosity of the bed material, A is the cross-sectional
area of the channel, Qs is volumetric sediment transport rate computed
by an appropriate technique, and qq {s the lateral inflow rate of sedi-
ment per unit length. Sediment transport and bed friction interaction
have been recently investigated for steady flow by Brownlie (1983).

Streamflow-Aquifer Interaction Interaction of streamflow and the
groundwater aquifer for floods occurring in channels situated in arid
regions can be of sufficient magnitude to affect the river flow by
attenuating the peak flow, reducing the wave peak celerity, and extend-
ing the recession limb of the river discharge hydrograph. The river
flow lost to the aquifer and at times the added flow from the aquifer
have been simulated by coupling flood routing models to either omne, two,
or three-dimensional groundwater models as reported by Pinder and Sauer
(1971), Pogge and Chiang (1977) and Freeze (1972). The coupling occurs
through the lateral flow term (q) in the Saint-Venant equatioms. Both
explicit and implicit dynamic wave models were coupled to the unsteady
saturated porous media equation and in Freeze's model to the saturated-
unsaturated equation.
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